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Using closure of gradient type, a model is constructed for describing the char- 
acteristics of the host flow and of the disperse phase. The model is valid in 
a wide range of variation of particle sizes. 

The available methods of modeling turbulent disperse (two-phase) flows can be divided 
into two groups. The first consists of studies based on the mixed Euler-Lagrange descrip- 
tion of motion of the medium: the equations of motion of the continuous host phase are 
represented and solved in Eulerean variables, and the equations of motion of the disperse 
phase - in Lagrangian variables, i.e., they are integrated along separate particle (drop) 
trajectories. Account of the stochastic nature of particle motion within this approach 
[1-4] leads to a substantial increase in the volume of computation, since for obtaining 
statistically reliable information it is necessary to have a sufficient representative en- 
semble of realizations. With decreasing particle size the number of realizations required 
for obtaining statistically reliable averaging characteristics must, generally speaking, in- 
crease, since the contribution of particle interactions with eddies increases with smaller 
sizes. Therefore, the application of statistical modeling of the dynamics of separate par- 
ticles is, apparently, advisable only for relatively inert particles (~/T ~ i). 

The second group covers studies using the Euler representation of the equations of mo- 
tion for both phases. This direction has been developed intensely in recent years, since it 
has a number of substantial advantages in comparison with the Euler-Lagrange approach: 
firstly, a single computational algorithm is used to solve the whole system of equations; 
secondly, the numerical implementation of determining the turbulent (fluctuating) character- 
istics of not only the host, but also the disperse phase, is relatively simple. Besides, 
describing the dynamics of very small particles does not cause any principal difficulties, 
since the limiting transition to the problem of turbulent diffusion of noninertial impuri- 
ties is realized for ~/T ~ 0. 

Most successes in modeling turbulent jet flows of gas suspensions within the Eulerean 
approach have been achieved in the studies [3-7]. One of the major problems in this case is 
the determination of turbulent stresses in the disperse phase. In [5, 6] the correlation 
moments of velocity fluctuations of the disperse phase are directly expressed in terms of 
Reynolds stresses of the host flow. These expressions have been obtained within the local- 
homogeneous approximation, and are therefore valid for relatively small particles (~/T S i) 
in the absence of large velocity gradients of the solid phase in the flow. Relations of 
gradient type, similar to the Boussinesq hypothesis in a single-phase turbulent flow, are 
used in the studies [3, 4, 7-10] to determine turbulent stresses in the disperse phase. It 
must be noted that models of this type are constructed purely phenomenologically on the 
basis of the analogy with the corresponding transport characteristics in single-phase flow, 
and therefore, as a rule, contain a large number of empirical constants. 

A simple model of the gradient type, constructed by the use of equations for the second 
moments of velocity fluctuations of the disperse phase, is suggested in the present study 
for calculating turbulent jet flow of gas suspensions within the Euler approach. Flows are 
considered with a low bulk concentration of a solid impurity, when particle collisions can 
be neglected and, consequently, stochastic particle motion is due only to their involvement 
in the fluctuating motion of the host flow. Particle motion is not accounted for, imposing 

G. M. Krzhizhanovskii State Scientific-Research Institute, Moscow. Translated from 
Inzhenerno-fizicheskii Zhurnal, Vol. 61, No. 4, pp. 554-563, October, 1991. Original arti- 
cle submitted December 17, 1990. 

0022-0841/91/6104-1199512.50 �9 1992 Plenum Publishing Corporation 1199 



certain restrictions on the validity region of the suggested model. The model constructed 
does not contain additional empirical constants related to the presence of a disperse phase. 
For relatively small particles it transforms to the diffusion-migration model [Ii]. 

i. The mass and momentum conservation equations of the host and disperse phases under 
conditions of constant physical properties and a low bulk particle concentration (~ << i) 
are written in the following form within mechanics of mutually penetrable media 

Ouk = O, (i) 
ax~ 

Oui + u h - -  Oui -- 1 Op --O~ui PPq~ (U~-- v~) q- Fi, ( 2 )  
Ot Oxk 9 Ox~ " § v OxhOx~ p~ 

Oq) &pvk 
a--T- + ax~ - o, (3 )  

Ot -{- Ox-----7. -- cp �9 q- F, . (4)  

Since the density of particle material is substantially higher than the gas density 
~ >> p), Eqs. (2) and (4) include only the interphase interaction force within the stand- 

approximation. The dynamic particle relaxation time is determined by the relation 

= oPd~ for R%~<lO a. 
18ov(l+O.15Re~ "68r) 

We a v e r a g e  Eqs. ( 1 ) - ( 4 )  over  an ensemble  o f  t u r b u l e n t  r e a l i z a t i o n s .  In  t h a t  ea se  i t  i s  
required that the terms containing the bulk impurity concentration satisfy the condition 
<~vl> = 0, i.e., r is used as a weight function, similarly to the well-known Favre averaging 
method in the theory of single-phase flows with varying density. Thus, the averaged mass 
and momentum conservation equations of a gas-disperse flow acquire the form 

oG = 0, (5 )  
Oxh 
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~)p 
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000 OOgVh 
- - +  - -  --0, 
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(6 )  

(7 )  

(8) 

The turbulent stresses in the gas phase are defined by the relation 

, v ( OU~ OUh I 
< u~uh > = --~- ~ k -  ~ \ ox~ + -a-dT / " (91 

The coefficient of turbulent gas viscosity is calculated on the basis of the two- 
parameter k-e model of turbulence, according to which 

v t -~- C~k2/~. 

For  t h e  c o r r e l a t i o n  <r a p p e a r i n g  in  ( 6 ) ,  
r e p r e s e n t a t i o n  [ 11] : 

<qfui>-=--Tg<ulus  Ox----7/' g = - -  1- -exp  -- f ( s ) & .  (ii) 

( lo )  

(8)  we have used  t h e  f o l l o w i n g  g r a d i e n t  

Taking into account relationship (i0), Eq. (8) acquires the form 

OOV~ + O@V~V~ O0 < v: v;~ > ( U~ - -  V~ ) Oq) 
Ot Ox~ -- Oxh + oO "~ + Fi - -  g < u~us > Ox~ " (12) 

1200 



The last term in Eq. (12) has a large value for small particles only, since g ~ T/~ 
for T/T + 0. For large particles the contribution of this term becomes unimportant, since 
g ~ (T/z) ~ for ~/T + ~. To simplify the description of the original system of equations we 
represent the velocity of motion of the disperse phase in the form 

V~ = Vo~--'~g< u;us > a ln______O~ (13) 
ax,,++ ' 

where V0i satisfies the equation 

a(DVoi Oq3Vo~Voh O0 ( v l  v'h > [ U~--  Vo~ 
at + Oxh --  axh + (D [ �9 + F~j . (14) 

The second term on the right hand side of Eq. (13) describes the "diffusion" velocity 
of small particles and its contribution to the total velocity V i decreases with increasing 
particle inertia. We note that, unlike Vi, the particle velocities V0i tend to the gas 
velocity with their decreasing inertia, i.e., V0i + U i when T + 0. With account of (13), 
Eq. (7) for the disperse phase concentration is written in the form of a diffusion equation 

a-T + Ox------~ ~=  Ox-----T ~ T T f D,~ . (15) 

With account o f  (11) and (13) ,  the term due to  the r e c i p r o c a l  p a r t i c l e  e f f e c t  on the 
average motion of the host flow in Eq. (6) is 

Au~ = ~''' [ o  ( G -  V~) + < ~'~i > ] - ( U z -  V0~). (16)  
p~ P~ 

I I  

To determine the turbulent stresses in the disperse phase <ViVk> we use the transport 
equations of second moments, obtained from (3), (4): 

-r --(~- O x , 

i 

(17) 

The mixed correlation moment of velocity fluctuations of the solid and gas phases is 
related, within the locally homogeneous approximation, to the Reynolds stresses of the gas 
by the well-known relation [6, 12] 

< v~.~ > -- f < ui .~ >. (18)  

With account of (18), it follows from (17) that 

, �9 ( aVo;+ , OVo~ , 

(19) 

+ Ot / q- Vo,~ ax~ -4- ~ Ox~ J" 

We r e p l a c e  V i by V0i in e x p r e s s i o n  (19) .  This rep lacement  does not  l ead  to  a subs t an -  
! ! 

t i a l  e r r o r ,  s i n c e  t he  t o t a l  c o n t r i b u t i o n  to  <ViVk> of  terms in the  c i r c u l a r  b r acke t s  i s  pro-  
p o r t i o n a l  to  ~, and, consequen t l y ,  becomes s u b s t a n t i a l  on ly  f o r  r e l a t i v e l y  l a r g e  p a r t i c l e s ,  
when the  d i f f e r e n c e  between V i and V0i v a n i s h e s .  

With the purpose of simplifying expression (19), we use isotropic representations for 
its terms in the right hand side: 

, , , , , , , 

O<vivk> a<vivk> 1 O~<v~v~v~> 

81h a< "v)> ~- Vo,, o < v } v : \  1 d(D<v/v:v, ,> 
- -  3 Ox,~ " ff (13 Ox,~ , ' 

( v;v;~ ~ -- 6ih , . 
�9 ' 3 < v~v,, > . 

With account of these relations, expression (19) for the turbulent stresses in the dis- 
perse phase acquires the form 
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2 (OVoi 4- OVoh 2 - OVo,~ 
< vlv~ > = -T6,,,k~--,,~ \-a?g o~ 3 ~"~x , , ) '  (2o) 

where the turbulent viscosity coefficient of particles equals 

Vp = Iv t q- "~k/3. (21) 

The turbulent energies of the solid and gas phases are related within the locally homog- 
eneous approximation by the relation 

k~ = fk. (22)  

According to (21) and (22), the following limiting relations are valid for the turbu- 
lent viscosity of the disperse phase 

% - + ~  for ~/Tp~O (/-+1), 

Vp -+ Tpk/3 for i "r,/T~ --+ oo (f ~ Tp/"c). 

The e q u a t i o n s  f o r  t h e  t u r b u l e n t  gas  e n e r g y  and i t s  d i s s i p a t i o n  in  t h e  p r e s e n c e  o f  p a r -  
t i c l e s  f o l l o w  f rom ( 1 ) ,  ( 2 ) .  They c o i n c i d e  w i t h  t h e  c o r r e s p o n d i n g  e q u a t i o n s  f o r  s i n g l e -  
phase  f l o w ,  e x c e p t  f o r  a d d i t i o n a l  t e r m s  due t o  t h e  i n t e r p h a s e  i n t e r a c t i o n .  W i t h o u t  a c c o u n t -  
ing  f o r  f l u c t u a t i o n s  in  p a r t i c l e  c o n c e n t r a t i o n ,  t h e s e  t e r m s  a r e  w r i t t e n  in  t h e  form 

A k =  2ppO ( 1 - -  f) k , A~-- _ 2p~O(1- - /~)~  (23) 

9 �9 p~ 

A p p r o x i m a t i n g  F ( s )  and F E ( s ) ,  as  in  [12,  13 ] ,  by s t a g g e r e d  f u n c t i o n s ,  t h e  f o l l o w i n g  
expressions are obtained for the coefficients of particles involved in the macro- and micro- 
fluctuating motion of the host flow: 

[ ----- 1 -- exp (--Tp/,), f~ = 1 -- exp (--Tdx). 

The interaction time of particles with the energy emitting gas fluctuations is deter- 
mined by the approximation equation 

Tp = 

satisfying the limiting relation 

T 

-I/1 -6 (T IU --VI/L) z 

TIU--VI *0, Tp-+ L TIU--VI 
- -  ~ - O O .  

Tp--~T for L IU--VI for L 

The microscale turbulence time under the assumption of isotropy of small-scale fluc- 
tuating motion is determined by the relation T~ = (15v/s) I/2 

2. We represent the system of equations for calculating stationary axially symmetric 
flow of gas suspensions within the approximations of boundary layer theory. The equations 
of motion of the gas and solid phases (5), (6), (14), (15), with account of relations (16) 
for the interphase interaction, are written in the form 

OU~ + 1 O r U ~  O, 
Ox r Or 

U~ OU~ OU~ OP -6 1 0 [ , OU~ ] ppO(U~--Vo~) 
--~x + UT a---~ = - -  o----x- r O~- r(v + v # - ~ r  9x -6 Fx' 

T, ' 

Of I)VoxVor l Or*Vgr 2 00tep ( Ur-- Vor ) 
Ox -+- ~ -  Or - -  3 Or + q~ + Fr T 

(24) 

(25)  

(26) 

(27) 

Ox r Or r Or T T -~r  ] (28) 

In writing down Eqs. (27), (28) it is taken into account that the structure of fluctuat- 
ing characteristics of jet flows is nearly isotropic, and the following relations are used 
accordingly 
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,2 ,~ ,2 

{ur >=2k/3, <v~ > =2k~/3, D t=T<u~ >=2Tk/3. 

The integral time of gas velocity fluctuation scales is determined by the expression 

k 3c. T : ~ - - ,  ~ - -  
2Sc~ 

For relatively small particles, i.e., for decreasing inertial param&ter x/T, the system 
of equations (26)-(28) transforms to the diffusion-migration model of describing the propa- 
gation of slightly disperse impurities in a turbulent flow [11]. 

With account of the terms of (23) resulting from the reciprocal particle effect on 
turbulence, fluctuating interphase gliding, the balance equations of turbulent gas energy 
and its dissipation are written in the form 

U~ Ok ~U~ Ok _ 1 0 (r v, Ok ) ( OU~ ~2 s _ 2  9v (1)(1--f)k, 
ax ' Or ~ -  a~- ,, ah Or 4- ~tt, Or } 9"~ (29) 

oxaS as 1 a (  v t 08 )  u,~ _-=-- + u r  . . . . . .  r - -  4- 
Or r Or a~ Or 

8 2 [:)p 
4- C1 k-  '~ \ Or J k " p'~ (30) 

The constants in (i0), (29), (30) have standard values [14]: C u = 0.09; o k = 1.0, o e= 
1.3; C I = 1.44; C 2 = 1.92. According to experimental data for diffusion of noninertial 
impurities in axially symmetric jets the turbulent Schmidt number is taken equal to 0.8. 

As boundary conditions at the jet axis we use the flow symmetry requirement 

r = 0 U r : Vor - -  a U x  - -  - -  O V O x  - -  _ _ O k  _ _  __08 _ _  O ,  

Or Or Or Or 
and at the external boundary - the equality of mean characteristics of the host and disperse 
phases of the flow wake parameters 

r=6~ U~=U~, Vo~=V~, o=q)~. 

To determine the boundary conditions for the fluctuating characteristics of the host flow 
we used the solution of turbulent transport equations in the homogeneous isotropic approxi- 
mation [13]. The initial conditions were determined either on the basis of experimental 
data, or by using the solution at the developed portion of the tube for mean and fluctuating 
quantities of the host phase and the assumption of homogeneity of characteristics of the 
disperse phase. 

3. To test the model suggested, a comparison was carried out with the experimental 
data of [15-18]. 

Figure I shows a comparison of calculated and experimental data [17] on damping of ax- 
ial gas and particle velocities along the jet. The presence of a disperse phase leads to an 
increased elongation of the jet in comparison with single-phase (sp) flow, in which case, 
due to the inertia of the disperse phase the damping of longitudinal particle velocity oc- 

-OF_'-- ~ ~L Od U~d ~ ' ~ ' ~ ~  

* -1  ~ " ~ . " ~ - 2 ~ . - ~ " _  

o . . . .  ~-~ ~ o . . . . . . ~  

I I I I I 

0 10 20  x/22 
Fig. i. Damping of longitudinal gas and particle 
velocities along the jet axis: i) particle velocity 
Vm/UsD, 2) gas velocity Um/UsD , a) X0 = 0.32, b) 0.85, 
c) 0.- Experimental data of [~7]. 
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Fig. 2. Radial velocity distributions (a) and fluctuation 
intensities (b) of the host and disperse phases: I) particle 
velocity Vx/Usp (intensity of longitudinal fluctuations of 

#qT~ particles ~ vx/Uo@ 2) gas velocity Ux/Usp (intensity of 

longitudinal fluctuations: of gas ux/Uo@ a) X0 = 0.32, b) 
0.85, c) 0. Experimental data of [17]. 
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Fig. 3. Damping of longitudinal gas and particle velocities 
along the jet axis: i) particle velocity Vm/U0, 2) gas 

velocity Um/U0, a) d = 170 p, X0 = 0.86; b) d = 500 p, 
X0 = 1.85; a) X0 = 0~ Experimental data of [12]. 

Fig. 4. Variation of velocity fluctuation intensity of the 
host phase over the length of the jet: i) d D = 7 p, X0 = 
0.22; 2) d = 17 p, X0 = 0.22, experiment [i~], 3) d D = 
170 p, X0 ~ 0.86, experiment [18], 4) single-phase j~t, 
experiment [20]. 

curs more slowly than that of the gas velocity. With increasing X0 we have an increase in 
the jet elongation, which is determined by the laminarization and increase in the total flow 
momentum [19]. 

Results of calculating radial distributions of mean velocities of the gas and disperse 
phase are presented in Fig. 2a. An important effect, obtained both in the calculation and 
experimentally is the decrease in the jet width, accompanied by an increase in its elonga- 
tion. 

In Fig. 2b!we s~ow results of calculating longitudinal fluctuations of the host and 
disperse phases. One observes substantial action of the disperse phase on the fluctuating 
flow structure. With increasing particle mass concentration one observes suppression of fluc- 
tuations of both the host and the disperse phases, corresponding to study results of other 
authors [3-7, 15-19]. 

1 2 0 4  
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Fig. 5. Variation of concentration of 
slightly disperse impurities along the 
jet axis: i) d D = 7 ~m, experiment 
[15]; 2) dp = 17 ~m, experiment [16]; 
3) single-phase jet, experiment [21]. 

The results provided verify the validity of using expression (20) for calculating the 
stress tensor in the disperse phase and expression (22) for the turbulent energy of parti- 
cles. 

With increasing particle sizes the basic effect of the disperse phase is manifested in 
the interaction of the mean fields. As shown in Fig. 3, the presence of very large parti- 
cles in the flow (dp = 500 Dm) does not exert substantial influence on the parameters of the 
host flow, and the ~amping of the longitudinal gas velocity of two-phase a~d single-phase 
jets occur practically identically. This indicates the conservation property of the fluc- 
tuating structure of the gas phase with respect to presence of large disperse impurities in 
the flow (Fig. 4, curves 3 and 4). However, with increasing distance from the jet intensi- 
fication takes place of the turbulent flow energy, due to inertial transport of host phase 
fluctuations by particles - as verified by experimental data. 

Quite many publications (e.g., [4-7]) are devoted to calculating the dynamics of small 
particles (T/T < i). The basic action mechanism of the host and disperse phases is in this 
case the mismatch between the gas and particle velocity fluctuations in the absence of mean 
gliding. Accordingly, the most interesting information on mean characteristics is obtained 
in calculating concentration fields of the disperse phase. As shown in experimental studies 
[15, 16], the concentration distribution of inertial impurities along the jet axis has an 
anomalous nature, manifested in "lacing" effects. In a number of studies [5, 6, 15, 16, 19] 
this fact is explained by the effect of the Magnus force, acting on a rotating particle. 
Particle rotation results from emergence conditions of jet flow from a nozzle. As shown in 
[ii], the "lacing" effect, along with rotation, is determined by particle involvement in an 
inhomogeneous fluctuating flow field. The computational model suggested in the present 
study is a long-range development of the diffusion-migration model described in [ii], and 
transforms into it when ~/Tp + 0. Figure 5 shows the variation of concentration of small 
particle impurities over the length of the jet. The "lacing" effect obtained in the calcu- 
lations is not expressed as explicitly as in the experimental studies. In our opinion, 
this effect is determined by the high flow velocities of the jet (U 0 ~ 45 m/sec), for which 
one can have substantial effects of particle rotation in the jet, generated by collisions 
with the wall. 

Due to the different action of particles on turbulent eddies of inertial and dissipa- 
tive scales, the presence of slightly disperse impurities can lead not only to suppression, 
but also to generation of energy fluctuations of the host phase [13] (see Fig. 4). Unlike 
large particles, the growth of energy fluctuations is determined in this case by the de- 
crease in additional dissipation in the equations for the dissipation rate of gas flow. 

Based on the results provided above, it can be concluded that the model suggested de- 
scribes adequately the mean and fluctuating characteristics of the host flow and the dis- 
perse phase, and is applicable to a wide range of variation of particle sizes and mass con- 
centrations of inertial impurities. 
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NOTATION 

Here t denotes time; x i are Cartesian coordinates; x, r are axial and radial coordi- 
nates; u i, Ui, u; are the actual, mean, and fluctuating gas velocity; vi, V i, v~. are the 
actual, mean, and fluctuating particle velocities; ~ is the time of dynamic particle relax- 
ation; ~, ~, are the actual and mean bulk particle concentrations; p, P are the actual and 
mean pressures; p, PD, are the gas and particle material densities; v is the kinematic vis- 
cosity coefficient o~ the gas; F i is the acceleration of the mass force (e.g., gravity 
force); dp is the particle diameter; T is the temporal integral scale of turbulence; Tp is 
the interaction time of particles with turbulent gas fluctuations; T s is the temporal micro- 
scale of turbulence; Dik = T<ui'u~> is the turbulent diffusion tensor of noninertial impuri- 
ties, D t is the diffusion coefficient of noninertial impurities; Sc t = vt/D t is the turbu- 
lent Schmidt number; L = (2k/3)Z/2T is the spatial integral scale of turbulence; k = 
<UnUn>/2 is the turbulent gas energy; s = v<(3u~./3Xk)=> is the dissipation of turbulent gas 
energy; Rep = dplU - V[/v, is the Reynolds number of interphase gliding; <v~v~}= <~v~v'k}/(D are 

! ! 
turbulent stresses in the disperse phase; kp = <VnVn>/2 is the turbulent energy of parti- 

cles f = I/~,I exp (--s/T) F (s) ds; f~---- I/~ ~ exp (--s/r) Fg (s) ds are the particle involvement coefficients in 
0 0 

the macro- and microfluctuating motion; g = T/T --f; P (s) = (u I (t) u~ (f q-[s)}/<u~ (t) u~ (0) the two-time cor- 
relation function of gas fluctuation velocity along the particle trajectory; F~(s)=<Oui(t)/Ox h 
Ou~(tq-s)/Oxh>/<O= ~ (O/OxhOu~U) Ox~> is the correlation function of the derivatives of gas velocity 
fluctuations; D is the jet diameter; 5 e is the coordinate of the jet boundary; and X0 = 
r denotes the mass concentration of the disperse phase. Subscripts: 0, value at the 
jet cross section; e, value at external flow; sp, characteristics of single-phase flow; m, 
value at jet axis. 
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